{"title":"The Cracks Propagation Monitoring of a Cantilever Beam Using Modal Analysis ","authors":"Morteza Raki, Abolghasem Zabihollah, Omid Askari ","volume":113,"journal":"International Journal of Mechanical and Mechatronics Engineering","pagesStart":970,"pagesEnd":976,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10004562","abstract":"Cantilever beam is a simplified sample of a lot of mechanical components used in a wide range of applications, including many industries such as gas turbine blade. Due to the nature of the operating conditions, beams are subject to variety of damages especially crack propagates. Crack propagation may lead to catastrophic failure during operation. Therefore, online detection of crack presence and its propagation is very important and may reduce possible significant cost of the whole system failure. This paper aims to investigate the effect of cracks presence and crack propagation on one end fixed beam`s vibration. A finite element model will be developed for the blade in which the modal response of the structure with and without crack will be studied. ","references":"[1] F. Vakili-Tahami, and M. R. Adibeig, \u201cInvestigating the possibility of\r\nreplacing IN 738LC gas turbine blades with IN 718,\u201d journal of\r\nMechanical Science and Technology, October 2015, Volume\r\n29, Issue 10, pp 4167-4178.\r\n[2] Rosenbaum, A. Chamanfar, M. Jahazi, and A. Bonakdar,\r\n\u201cMicrostructure analysis of broached inconel-718 gas turbine disc firtrees,\u201d\r\nProceedings of ASME Turbo Expo 2014: Turbine Technical\r\nConference and Exposition, Volume 6: Ceramics; Controls, Diagnostics\r\nand Instrumentation; Education; Manufacturing Materials and\r\nMetallurgy, June 16 \u2013 20, 2014, D\u00fcsseldorf, Germany, ISBN: 978-0-\r\n7918-4575-2.\r\n[3] J. Girardeau, J. Pailhes, P. Sebastian, F. Pardo, and J.-P. Nadeau,\r\n\u201cTurbine blade cooling System optimization,\u201d Journal of\r\nTurbomachinery, American Society of Mechanical Engineers, Vol. 135\r\n(6), 2013, pp. 061020-061020.\r\n[4] J. S. Gray, J. Chin, T. Hearn, E. S. Hendricks, T. M. Lavelle, and J.\r\nMartins, \u201cThermodynamics for gas turbine cycles with analytic\r\nderivatives in open MDAO,\u201d 57th AIAA\/ASCE\/AHS\/ASC Structures,\r\nStructural Dynamics, and Materials Conference, AIAA SciTech, (AIAA\r\n2016-0669).\r\n[5] L. Chen, J. Chen, \u201cAerodynamic optimization design for high pressure\r\nturbines based on the adjoint approach,\u201d Chinese Journal of\r\nAeronautics, Volume 28, Issue 3, June 2015, Pages 757\u2013769\r\n[6] G. Morgese, M. Torresi, B. Fortunato, S. M. Camporeale, \u201cOptimized\r\naerodynamic design of axial turbines for waste energy recovery,\u201d 70th\r\nConference of the Italian Thermal Machines Engineering, Volume 82,\r\nDecember 2015, Pages 194\u2013200.\r\n[7] A. Dahlquist, and M. Genrup, \u201cAerodynamic gas turbine compressor\r\ndesign for an oxy-fuel combined cycle,\u201d ASME Turbo Expo 2015:\r\nTurbine Technical Conference and Exposition, Volume 3: Coal,\r\nBiomass and Alternative Fuels; Cycle Innovations; Electric Power;\r\nIndustrial and Cogeneration Montreal, Quebec, Canada, June 15\u201319,\r\n2015, ISBN: 978-0-7918-5667-3.\r\n[8] Z. Mazur, R. Garc\u00eda-Illescas, J. Porcayo-Calder\u00f3n \u201cLast stage blades\r\nfailure analysis of a 28 MW geothermal turbine,\u201d Third Int. Conference\r\non Engineering, Volume 16, Issue 4, June 2009, Pages 1020\u20131032.\r\n[9] S. Orhan \u201cAnalysis of free and forced vibration of a cracked cantilever\r\nbeam,\u201d NDT & E International, Volume 40, Issue 6, September 2007,\r\nPages 443\u2013450.\r\n[10] J. Wauer, \u201cVibrations of cracked rotating blades,\u201d Rotordynamics '92,\r\nProceedings of the International Conference on Rotating Machine\r\nDynamics, Hotel des Bains, Venice, 28\u201330 April 1992, Springer-Verlag\r\nLondon Limited.\r\n[11] A. Shukla, S. P. Harsha, \u201cAn experimental and fem modal analysis of\r\ncracked and normal steam turbine blade,\u201d Materials Today:\r\nProceedings, 2015\u2013Elsevier.\r\n[12] W. M. Ostachowicz, M. Krawczuk \u201cAnalysis of the effect of cracks on\r\nthe natural frequencies of a cantilever beam,\u201d Journal of Sound and\r\nVibration, 1991, vol.150.\r\n[13] Fran\u00e7ois L\u00e9onard, Jacques Lanteigne, Serge Lalonde, Yvon Turcotte,\r\n\u201cFree vibration behavior of a cracked cantilever beam and crack\r\ndetection,\u201d Mechanical Systems and Signal Processing, 2001 15(3), 529-\r\n548.\r\n[14] M. Behzad, A. Ebrahimi, A. Meghdari, \u201cContinuous vibration theory for\r\nbeams with a vertical edge crack,\u201d Scientia Iranica Transaction B:\r\nMechanical Engineering, Vol. 17, No. 3, pp. 194 204.\r\n[15] Singiresu S. Rao \u201cVibration of Continuous Systems,\u201d (Book style),\r\nHoboken, New Jersey, 2007.\r\n[16] Mihir Kumar Sutar, \u201cFinite element analysis of a cracked cantilever\r\nbeam,\u201d International Journal of Advanced Engineering Research and\r\nStudies, E-ISSN2249\u20138974, 2012.\r\n[17] D. J. Ewins, \u201cModal Testing: Theory and Practice,\u201d (Book style),\r\nOctober 1994, Taunton, Somerset, England, ISBN O47 1 9CU72 4.\r\n[18] ANSYS, Release 15, ANSYS Inc., 2013.\r\n[19] MATLAB, Release R2013a, the Math Work Inc., 2013. ","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 113, 2016"}